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AN EXPERIMENTAL AND ANALYTICAL VIBRATION STUDY OF
ELLIPTICAL CYLINDRICAL SHELLS

By John L. Sewall, William M. Thompson, Jr.,*
and Christine G. Pusey
Langley Research Center

SUMMARY

This paper reports an experimental and analytical vibration study of free-free
isotropic elliptical cylindrical shells of constant mass ranging in cross-sectional eccen-
tricity from zero (circular shell) to 0.916 (corresponding to a major-to-minor axis ratio
of 2.5). Experimental resonant frequencies, nodal patterns, and mode shapes were
obtained by use of an air-jet shaker or an electrodynamic shaker with a noncontact induc-
tance probe that could be moved over most of the shell surface. Experimental frequencies
are in generally good agreement with analytical frequencies calculated by means of a
Rayleigh-Ritz type of analysis featuring multiterm longitudinal and circumferential modal
expansions. As many as four longitudinal terms, including beam-vibration functions,
were required along with an increasing number of circumferential trigonometric terms
in each shell displacement series to obtain converged results with increasing eccentricity.
As many as 32 circumferential terms were required for the highest eccentricity shell.

Frequencies for shells with eccentricity of 0.916 were as much as 40 percent below
the corresponding circular-shell frequencies. As eccentricity increased, fewer higher
order experimental shell vibration modes could be identified, and there were more higher
order analytical modes with two frequencies for each pair of longitudinal and circumfer-
ential mode numbers. Analytical and experimental mode shapes for eccentricities of
0.760 and 0.916 indicate considerable longitudinal and circumferential modal coupling that
tends to preclude positive identification according to longitudinal and circumferential
components.

Frequencies calculated by methods involving various approximations to the noncir-
cular curvature are in good agreement with both experimental and analytical frequencies
of the present study for the inextensional modes, at least up to an eccentricity of 0.760
(corresponding to a major~to-minor axis ratio of 1.538).

*Underwater Explosions Research Division, Naval Ship Research and Development
Center, Portsmouth, Virginia.
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INTRODUCTION

In the study of the response of shell structures to static and dynamic loading, con-
siderably more attention has been given to shells of revolution than to shells of noncir-
cular cross section. However, although many structural components of aerospace and
submarine vehicles can be adequately treated as actual or equivalent shells of revolution,
this approach may well be unacceptable for shells with significantly noncircular curva-
ture. It is therefore profitable to examine the behavior of noncircular shells, not only to
obtain basic data, but also to define the limitations of certain near-circular shell

analyses.

Some noncircular-shell investigations are reported in references 1 to 14. Refer-
ences 1 to 5 are concerned with particular aspects of the static structural characteris-
tics of slightly noncircular shells, and references 6 to 14 deal with dynamic characteris-
tics. Specifically, references 1 to 3 are concerned with unstiffened and ring-stiffened
oval cylinders subjected to hydrostatic pressure and show large effects of noncircularity
on static stresses and displacements. Reference 4 presents a finite-difference analysis
of stresses and displacements in an orthotropic noncircular shell of arbitrary curvature
and varying circumferential thickness. Reference 5 presents series solutions to
Donnell's equations for the displacements due to pressure loads for open noncircular
shells with arbitrary end conditions. References 6 to 11 are vibration studies, of which
references 7 to 9 indicate relatively small effects of noncircularity on the frequencies of
free vibration of infinitely long oval cylinders. Reference 12 contains a considerable
amount of experimental frequency and mode-shape data for clamped-free elliptical cyl-
inders; however, all these cylinders had the same cross-sectional eccentricity. In ref-
erence 14, the method of reference 5 is applied to the vibration of noncircular curved
panels. Most of references 1to 14 are entirely theoretical with no experimental data
included for comparison with analytical results. Experimental and analytical static
stresses are compared in reference 4. Reference 11 contains experimental frequencies
for a variety of noncircular shells and includes comparisons of these frequencies with
approximate analytical frequencies based on frequency equations of circular shells with

equivalent radii.

The purposes of the present paper are to compare measured and calculated vibra-
tion data of short, free-free elliptical cylinders of constant mass and to determine the
effects of cross-sectional eccentricity on shell frequencies and mode shapes. Attention
is given to the effects of eccentricity (or noncircularity) both on the two sets of inexten-
sional modes, as in references 9 and 10, and on two sets of higher order longitudinal
modes. Vibration tests were conducted on four thin-shell isotropic cylinders of equal
length, perimeter, and thickness, and with eccentricities ranging from zero (circular cyl-
inder) to 0.916, corresponding to major~to-minor axis ratios from 1 to 2.5, respectively.
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Analytical frequencies were obtained by application of an energy approach utilizing the
Rayleigh-Ritz procedure in multiterm circumferential and longitudinal modal expansions.
Trigonometric terms were used for the circumferential series and beam functions for
the longitudinal series. Measured frequencies are compared with frequencies computed
both by this analysis and, where possible, by the analyses of references 9 to 11. In ref-
erences 9 and 10, the frequency is approximated by expressions involving the frequency
of the circular cylinder plus power-series terms containing eccentricity parameters for
ovals. The approximate frequency expressions of reference 11 are essentially circular-
shell equations with equivalent or average values of the radius of curvature chosen to
represent the noncircular cross section.

Analytical mode shapes obtained in the present analysis are included to illustrate
the nature of circumferential and longitudinal modal coupling due to noncircularity, and
many of these mode shapes are compared with experimentally determined mode shapes
for the radial (or normal) displacement. Pertinent details of the analysis are given in
- appendix A. In addition, analytical frequencies of the elliptical shell models with
assumed freely supported ends are included in appendix B, and comparisons are made
with the analytical frequencies of reference 10.

SYMBOLS

Aijmp,Bijmp:Cijmp
F G elements of stiffness matrix (see appendix A)
ijmp>Gijmp-Hijmp

a,b length of semimajor and semiminor axis, respectively, of elliptical shell

ampsPmp:;Cmp generalized coordinate for antisymmetric-mode displacement u, v,
and w, respectively

imp,ﬁmp,émp generalized coordinate for symmetric-mode displacement u, v,
and w, respectively

E Young's modulus

b\2
e eccentricity of elliptical shell, e =1 - (’a’)
£ circular frequency, hertz
h shell thickness



circumferential integrals (see appendix A)

longitudinal mode number; V-_l in equations (5)

longitudinal integrals (see appendix A)

half the number of longitudinal node lines for elliptical shells
stiffness submatrix (see eq. (9))

length of shell

mass submatrix (see eq. (9))

longitudinal mode number

beam eigenvalue (see appendix A)

circumferential mode number for circular shell

integers identifying upper limits on number of modes used in the analysis
(see eqgs. (5))

generalized coordinate
radius of curvature of shell
arbitrary reference radius
arc length around shell
total circumference of shell
kinetic energy

time

strain energy



u,v,w longitudinal, circumferential, and radial shell displacement, respectively
(see fig. 6)

XmuXmy,-Xmw Mth longitudinal mode shape for u-, v~, and w-displacement, respectively

X,¥,Z longitudinal and cross-sectional coordinates (see fig. 6)
aijmp:ﬁijmpﬂ’ijmp elements of mass matrix (see appendix A)

Y beam eigenvalue property (see appendix A)

€x,€0:6x o membrane strains (see egs. (1))

6 angle between the minor axis and the radius vector R (see fig. 6)
Ky »K s Ky g changes of curvature (see eqgs. (1))

U Poisson's ratio

p shell mass density

& =1~ e2cos29

¢ central angle (see fig. 6)

w angular frequency, radians/second

Subscripts:

a antisymmetric

i,m identifies ith and mth longitudinal modal components
i,p identifies jth and pth circumferential modal components
s symmetric

Supersecript T denotes transpose of a matrix.

Matrix elements and integrals with bars are associated with symmetric mode.



Dots over quantities denote differentiation with respect to time.

' dX.(x
Primes denote differentiation with respect to x, for example, X, = _dfrzﬁ and
A _ dZXmW(X)
g

EXPERIMENTAL INVESTIGATION

Models

Four cylindrical shell models of equal perimeter, length, and thickness were used
in the investigation. One model was circular in cross section, and three were elliptical.
Each model was 24 inches (61.0 cm) long and was made from two shaped sections butt-
welded together with smoothed seams at the ends of the major axis. Each section was
6061 aluminum alloy and was 0.032 inch (0.813 mm) thick. Keeping the perimeter,
length, and thickness the same for all models maintained a constant total mass. The
model dimensions and eccentricities, along with the material properties E, u, and p,
are indicated in table I.

Test Apparatus and Procedure

Vibration tests were conducted with each model suspended by 12 soft elastic sup- '
ports attached at equidistant points around the perimeter at one end of the cylinder, as
shown in figure 1. The basic parts of the test apparatus are the same as those reported
in reference 15 and are shown schematically in figure 2 as arranged for some of the tests
in this investigation. Each model was excited by an oscillatory force directed normal to
the shell surface. Two types of vibration exciters were used, an air-jet shaker of the
type described in reference 16 and a small electrodynamic shaker capable of a 1%— pound

(6.67-N) vector force output. At low frequencies (less than 50 Hz), the air shaker pro-
vided a noncontact excitation force which permitted unrestricted, large-amplitude motion
of the cylinder wall. For relatively low-amplitude responses at higher frequencies, the
electrodynamic shaker was used and was attached to the cylinder wall by means of a
lightweight vacuum cup. Of the two shakers, the air shaker was believed to give more
reliable lower frequencies because of the appreciable stiffness and mass effects of the
electrodynamic shaker on these frequencies. (See also ref. 17.) Stationary and movable
noncontact inductance probes of the type described in reference 15 were used to determine
resonant peaks, phase shifts, and mode shapes in normal displacement. Resonant fre-
quencies were obtained by tuning the shaker for maximum amplitude response normal to
the shell wall at an antinode.




With fhe test setup of figure 2, nodes of the normal displacement were located by
monitoring the outputs of the fixed and movable probes in the forms of Lissajous figures
on an oscilloscope and by observing the phase shifts for different positions of the movable
probe. No mode-shape measurements were made. This apparatus was used for all the
tests on model 2 and for some of the tests on model 4.

For the rest of the fest program, normal mode shapes were measured with the aid
of the motorized movable probe apparatus shown in figures 1 and 3. The movable induc-
tance probe was driven by an electric motor along a track mounted on a concentric,
3/8-inch (0.952-cm) steel elliptical strap surrounding the model, as shown in figure 1,
in order to obtain circumferential mode-shape components. This strap was supported on
four vertical threaded rods and could be rotated by another electiric motor through a
chain drive in order to obtain longitudinal mode-shape components. The supporting
instrumentation was more involved than that represented in figure 2 and is detailed in
reference 15. Figure 3 is a closeup view of the motorized probe assembly between the
elliptical track support and the model. The thin white wire leading upward from the back
of the probe itself goes to the electronic instrumentation which controls the distance of
the probe from the model and the operation of an x-y plotter that traces out normal shell
displacements as the probe travels over the shell surface.

Experimental Results

Resonant frequencies of the four cylindrical shells are listed in tables II to IV.
The mode identification integers m, n, and p used in tables II and III are defined in
figure 4. Mode shapes corresponding to frequencies in tables II(b) and IV for model 3

b

up to about 170 Hz for the circular shell and up to about 50 Hz for the elliptical shells,
and the electrodynamic shaker (designated as "electric shaker' in the tables and figures)
was used for all other modes (except as noted in tables II and HOI(c)). Erratic random
deviations of some of the mode shapes in figure 5 were due to occasional drifts from
resonance during mode-shape measurement. This drift was more apt to occur with the
air shaker than with the electrodynamic shaker. The closely spaced ripples superim-
posed on the responses at the lowest frequencies are attributed to the closeness of these
frequencies to the natural frequency of the probe servo system.

<3 = 1,538, e = 0.'760) are shown in figure 5. The air shaker was used for frequencies

The modal identifications in figure 4 apply to normal (or radial) shell displace-
ments. The longitudinal mode number m denotes the number of circumferential nodes.
The circumferential mode numbers n and p denote, respectively, the number of cir-
cumferential waves for the circular shell and one-half the number of longitudinal nodes
for the elliptical shells, The modes for m =0 and 1 are designated as 'inextensional"
because of their straight-line variations in the longitudinal direction and because of the
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monotonically increasing frequencies with increasing n or p, consistent with purely
bending vibrations of the shell. Modes for m Z2 are characterized by curved (indi-
cating elastic) longitudinal mode-shape components and by the existence of relative mini-
mums in the variation of frequency with n or p consistent with the well-known shell
behavior associated with combined bending and stretching (or membrane) deformations.

Nearly all resonances excited for the circular shell (table II) and most of the lower
frequency inextensional modes of the elliptical shells (table III) could be clearly classi~
fied according to figure 4. In addition, the identifiable elliptical-shell modes were either
symmetric or antisymmetric with respect to the minor axis, and this distinction is
clearly evident in figure 5 for the lower frequency modes. The symmetric modes were
excited by alining the shaking force along the minor axis, and the antisymmetric modes
were obtained with the shaker located part way between the ends of the major and minor
axes at a point of relatively large displacement. Most symmetric and antisymmetric
frequencies differed by less than 1 Hz.

The number of identifiable resonances decreased with increasing frequency and
increasing eccentricity e until few elliptical-shell modes could be exclusively identi-
fied as m =2 or 3. Many of these modes were highly coupled with m =0 or 1 and/or
more than one p mode, as is evident in figure 5 by the different values of m and/or
p in different parts of the model. Moreover, both symmetric and antisymmetric char-
acteristics were present in the circumferential mode shapes of most of these modes.
Localized effects due to the electrodynamic shaker also contributed to the uncertainty
and ambiguity of modal identification, mainly by causing local longitudinal mode-shape
distortions that tended to become more severe with increasing frequency, as is shown in
figure 5. Consequently, the frequencies in table IV are simply listed in order of
increasing value.

METHOD OF ANALYSIS

The analytical method derived and applied in this paper is an application of the
well-known Rayleigh-Ritz procedure. The assumed forms for the inplane and radial (or
normal) displacements were finite series representing circumferential and longitudinal
(or axial) components of these displacements. Elementary trigonometric functions rep-
resented the circumferential components for both symmetric- and antisymmetric-mode
frequencies. Longitudinal displacement components were chosen to satisfy geometric
end conditions (displacement and slope). For the free-free end conditions, longitudinal
mode-shape components for the two lowest sets of modes (m = 0 and 1) were approxi-
mated by simple constant and linear algebraic expressions, and as in reference 18, the
longitudinal mode-shape components for the higher modes (m Z 2) were approximated by



free-free beam-vibration functions. Longitudinal mode-shape components are also
included for the freely supported end conditions and are given by trigonometric functions.

Strain-Displacement Relations

The elliptical geometry embodied in the analysis is detailed in figure 6, and the
analysis is formulated on the basis of thin-shell theory in terms of circumferential and
axial coordinates 6 and x. The deformation of the shell middle surface is expressed
in terms of the displacements u, v, and w in the axial, circumferential, and normal
directions, respectively, with the positive normal direction considered to be outward.
By use of Sanders' theory (ref. 19), the strains €, €4, and €xg and changes of curva-
ture Ky, Kg, and Kyg are given in terms of the displacements by the relations

3
_ du _1fav _1fov 1 8u
E ™ 69’ﬁ<35+w> ex@“z’(?i*‘ﬁ'a@)
o = 22W 102w ev 1 dRfw (1)
X g2 R2[502 96 R d6\9¢ ?
7, =38 _1 02w _ 1 du
X0 "4RBx ROx 90 L5280 J

where R is the radius of curvature which, for the elliptical cross section, is given by

2
R =—2 @)
a<i>3/2
9 b\ dR
with & =1 - e2cos29 and e2 =1 - (E) . The a0 term of Kg is due to the noncircu-

larity of the cross section.

Strain and Kinetic Energies

The strain energy of an isotropic shell of uniform thickness h may be written as
follows in terms of the strains and changes of curvature:

L 27
_ Eh 2 2 2
U=—F—— [€x+2/~'5x€ +€4 +2(1 -4 ]Rdedx

3 L 27
4 ER° S‘ S‘ Ec}% + 2y K g + K% + 2(1 - MZ)R?;;JR dé dx ®)
24(1 - (2) Y0 Yo

where E is Young's modulus and u is Poisson's ratio.



The shell kinetic energy is
L 27
T=-p—hS‘ S (ﬁ2+i;2 +v'v2>Rd9dx (4)
- 20 Yo

where p is the mass density of the shell.

Modal Functions

Each displacement u, v,or w is assumed to be a finite series, each term of
which is the product of circumferential and axial modal functions weighted by an appro-
priate amplitude coefficient (or generalized coordinate) qmp(t). With the assumption of
simple harmonic motion of frequency w, the assumed displacements may be written as

P Q h
u(x,6,t) = Z Z <§mp COS P + app sin pé))Xmu(x)eiwt
m=0 p=0
P Q
N .
v(x,6,t) = z Z/ (bmp sin p§ - by, cos p6>XmV(x)e1“’t > (5)
m=0 p=0
P
w(x,0,t) = Z Z (Emp cos pf + Cmp sin p9>Xnm,V(x)ei“)t
m=0 p=0 J

where éimp, bmp, and Emp are amplitude coefficients for the symmetric modes and
Amps bmp, and Cmp are amplitude coefficients for the antisymmetric modes. Upper
limits for the series of axial and circumferential modal functions are denoted by P and
Q, respectively,

The X, functions in equations (5) approximate the longitudinal modal components
which are chosen to satisfy displacement and slope conditions at the ends of the shell.
For example, the conditions of zero displacement for v and w at the ends of a simply
(or freely) supported shell without axial constraint are satisfied by the familiar trigono-
metric functions

max

X =
mu = €08 —

(6)

... M7X
XmV = me = Sln —L—'
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The arbitrary end displacements and slopes of a free-free shell can be satisfied by
choosing the following modal functions:

Xou =0
(m =0) (7a)
Koy = Xow = 1
1
Xy = L
= b
X . % _1 (m=1) ('Tb)
1v iw ™71, 735
' ™~
Xmu = Xm
Xmv = Xmw = Xm = cosh Ny x + cos Nyjx (m z 2) (Tc)
- ym<sinh Nmnx + sin me>
J
where X, = . and Ny, and vy, are the eigenvalue properties of a free-free

vibrating beam, as tabulated in reference 20, for example. The functions in equa-
tions (7c) are essentially the same as those used in reference 18. The existence of the
inextensional mode shapes approximated by equations (7a) and (7b) is demonstrated
experimentally in this paper and, for free-free circular cylinders, in reference 21.

Derivation of Frequency Equation

With the substitution of equations (1), (5), and (7) into equations (3) and (4), the
equations of motion are obtained from the following relations consistent with the
Rayleigh-Ritz procedure:

P lux,6) - w2T(x,06) =LEJ(X,9) - sz(x,G; =2 1Ux,0) - w2T(x,0)| = 0
2345 - - 2y - %L .
(8)

— — — —
2 lux,6) - wZT(x,e)T =2 1U(x,6) - w2T(x,6)| = 2~ |U(x,6) - w2T(x,6)| =0
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The operations represented by equations (8) lead to the familiar eigenvalue-eigenvector
formulation which may be expressed in the following general matrix form:

0 K, 0 Mg a,

where K and M represent square stiffness and mass matrices of size 3(P + 1)

by Q+ 1, q denotes an eigenvector, and the subscripts s and a identify sym-

metric and antisymmetric matrix elements, respectively. The eigenvalue is given by
w2RZp(1 - 12)

A= =

The off-diagonal blocks vanish, and equation (9) uncouples into two simpler equa-
tions, one for the symmetric and the other for the antisymmetric modes. The equation
for the symmetric mode may be put in the form

[ B ¢| [a o o)(z
—T — — - -
B F G|-al0 B o|lb)=0 (10)
<t & = 0o 0 Y|

The equation for the antisymmetric mode is identical except the matrix elements do not
have bars. The superscript T denotes the transpose of a matrix. Each letter in the
square matrices of equation (10) represents a submatrix, the elements of which are given
in detail in appendix A. Longitudinal modal components of the matrix elements for the
freely supported shell, based on equations (6), are given in appendix B.

For the circular cylindrical shell (e = 0), R is constant and can be considered to
be equal to Rg, and each series of circumferential terms in equations (5) reduces to a
single trigonometric function. Equation (10) then gives the same frequencies for sym-
metric and antisymmetric modes.

ANALYTICAL RESULTS AND COMPARISON WITH EXPERIMENT

The analysis described was applied to the circular and elliptical cylindrical shells
of table I. Analytical frequencies of the free-free shells are included along with experi-
mental frequencies in tables II to IV. Analytical mode shapes are presented in figures 7
to 12, and experimental mode shapes are included for comparison in figures 7 and 9 to 11.

12




Circumferential mode-shape components are presented in figures 7 to 10 and 12, and
experimental components included in figure 9 are the topmost mode shapes shown for
each frequency in figure 5. Longitudinal mode-shape components are presented in fig-
ure 11 for model 4. Experimental nodes obtained with the simplified test apparatus of
figure 2 are included in figure 10(a) for model 4. Other frequency comparisons are made
in figures 13 and 14.

Elliptical~shell frequencies calculated by the method of the present paper are also
compared in table III with frequencies calculated by the method of references 9 to 11.
Analytical frequencies of the freely supported shells calculated by the present analysis
are given in appendix B and are compared with analytical frequencies of reference 10 in
figures 15 and 16.

Convergence of Analytical Results

Shell modes. - In the following table are listed the numbers of the longitudinal and
circumferential functions used in each of the displacement series of equations (5) to
obtain converged analytical frequencies and mode shapes:

Number of terms in each series of
Model Tables e equations (5)
Longitudinal Circumferential
1 i 0 4 | aj
2 Imi(a), IV .526 4 13
3 III{b), IV .760 4 16
4 IiIi(c), IV .916 2 32
Ap =n.

The numbers in this table apply to all even-numbered or all odd-numbered modal func-
tions, since, as noted in appendix A, even-numbered and odd-numbered functions do not
couple when included together in equation (10). Results were considered to be converged
when the analytical frequencies of tables II to IV were negligibly changed with the inclu-
sion of more terms in the series than those in the foregoing table. Beginning with the
circular shell (model 1), which required only a single circumferential term in each
series, converged solutions for this model were obtained with four terms, including
beam-vibration functions, in each longitudinal displacement series, thatis, m =0, 2, 4, 6
and m=1, 3, 5,7 in separate calculations for each circumferential wave number n.
(The circular-shell results in table II and in fig. 13 are actually based on five longitudinal
modal functions, the fifth term being the beam functions for m = 8 and 9 in the foregoing

13



m sequences.) Analytical circular-shell frequencies of the inextensional modes
(m = 0 and 1) were negligibly different from those in table II when just a single longi-
tudinal modal function (m = 0 or 1) was included in each displacement series.

Next, for the elliptical shells in order of increasing eccentricity, the number of
longitudinal terms was held to four, and the number of circumferential terms was
increased to achieve convergence. As the foregoing table shows, more circumferential
terms were required with increasing eccentricity, and at e = 0.916 the number of
required terms exceeded the capacity of the computing facility utilized in this study
(Control Data 6600 computer system at the Langley Research Center). Hence, the num-
ber of longitudinal terms had to be reduced to allow for more circumferential terms, and
the combination of two longitudinal and 32 circumferential functions listed in the table
gave results that are as close to convergence as could be obtained for this model. This
observation is further borne out in comparisons of the analytical frequencies in
tables III(c) and IV with those in table V for model 4. Comparison of tables II(¢c) with V
shows frequencies for m =0 and 1 to be satisfactorily converged with a single longi-
tudinal term and 30 circumferential terms. However, it appears from tables IV and V
that additional longitudinal terms were needed more than additional circumferential
terms to obtain converged results for m = 2 and 3; and 32 circumferential terms appear

to be enough.

Analytical circumferential mode shapes are shown for various modal approxima-
tions in figure 12. These mode shapes, together with their corresponding frequencies in
table V, show the sensitivity of certain modes to variations in the number of circumfer-
ential terms included in each displacement series of equations (5). The existence of dual
frequencies at some values of p and none at others also occurred for models 2 and 3,
as may be seen in figures 8 and 9(e) to 9(h), and there appears to be no consistency to
this behavior other than the increasing number of such modes with increasing eccentricity.

Rigid-body modes.- The lowest frequencies of free~free shells are zero frequencies
for six rigid-body modes. These zero frequencies occur at p (or n) = 0 and 1 for the
inextensional modal families m = 0 and 1, and in table VI are listed the displacements
with zero frequencies for both circular and elliptical shells. Six zeros were obtained for
the circular shell regardless of the number of terms in the displacement series, and six
zeros were obtained for two of the elliptical shells (e = 0.526 and 0.760) with the same
number of terms as needed for convergence of the shell modes. As shown in the last
column of the table, five zero frequencies were obtained for the remaining high-
eccentricity elliptical shell (e = 0.9186), but the sixth frequency was very low, 1.01 Hz.
With only a single modal product in each displacement series, only three rigid-body
modes could be obtained for any of the elliptical shells.

14



Effects of Eccentricity

The close agreement between analytical and experimental frequencies and mode
shapes of the circular cylindrical shell (model 1) in table IT and figure 7 afforded a satis-
factory basis for evaluating eccentricity effects of the elliptical shells. Both analytical
and experimental frequencies and the corresponding circumferential mode shapes of the
elliptical shells showed greater distortions from sinusoidal-type responses as eccentric-
ity increased. Tables III and IV show generally good frequency agreement over the
eccentricity range of the models, and corresponding analytical and experimental mode
shapes in figures 9 and 10 are fairly well correlated. This correlation is clearly better
for the low-frequency inextensional modes than it is for the higher frequency modes,
particularly those involving m =2 and 3. Experimental mode shapes are compared,
somewhat arbitrarily, with analytical symmetric or antisymmetric mode shapes
according to shaker position as indicated in figure 9, although, as previously noted, most
modes involving m =2 and 3 had both symmetric and antisymmetric characteristics
regardless of shaker position. For the experimental mode shapes included in fig-
ure 10(b), the shaker was located at the end of the minor axis.

Variations of frequency with mode numbers are shown in figure 13 for eccentric-
ities of zero (model 1) and 0.526 (model 2). Similar plots for the higher eccentricity
shells were found to be impracticable because of the dual frequency behavior noted
earlier. This property for model 2 is identified in the right-hand plot of figure 13 by
the missing analytical frequency for m =3, p = 10 and the second analytical frequency
at m =3, p=12 (denoted by ).

Eccentricity effects on both experimental and analytical frequencies are summa-
rized in figure 14. Except for the experimental inextensional frequencies for e = 0.526
(table III(a)), a general decrease in frequency occurred with increasing eccentricity, and
this decrease was largest for e 2 0.760 (or a/b 2 1.538). This effect was much
smaller for the inextensional modes than for the minimum frequencies of m =2 and 3
which, at e = 0.916, were approximately 40 percent lower than the minimum circular-
shell frequencies. For e = 0.526, there was a slight, though consistent, rise in most
experimental inextensional frequencies of about 2 or 3 percent, which was not predicted
by the analysis.

Comparisons With Other Methods

Inextensional frequencies calculated by the methods of references 9 to 11 are
included in table III and appear to be in almost as good agreement with experimental ire-
quencies as are the frequencies calculated by the present analysis, at least for e =0.760.
The methods of references 9 and 10 are based on approximations to the noncircular
radius of curvature that are contained in the terms of power series which include the

15



circular-shell frequency as the first term. The method of reference 9 is valid for

a/b < 2.06 and is thus not applicable to e =0.916 (a/b = 2.5) in the present study.

The noncircular terms of reference 10 are based on a Fourier series representation of
the radius of curvature in which the coefficients of the series may be obtained by approx-
imating the noncircular cross section by two pairs of circular arcs, each having a differ-
ent radius. By following the recommendations of both of these references, the frequen-
cies in the two right columns of table Il were obtained by retaining only a single
noncircular power-series term, other than the circular-shell frequency, in the frequency
equation. Most of the frequencies calculated in reference 9 are seen to be somewhat
higher than those calculated in reference 10, the differences for e = 0.760 being greater
than those for e = 0.526. (Compare tables II(a) and (b).)

The applicable frequency equation of reference 11 is essentially the circular-shell
equation for m =1 with the radius of curvature approximated by an average value
based on the semimajor and semiminor axes of the elliptical shell. The frequencies
given by this method are in about as good agreement with experiment as those of refer-
ences 9 and 10 for e = 0.526 and 0.760 and tend to be slightly higher than those of the
present analysis and reference 10 at higher values of p. However, the agreement at
e = 0.916 is clearly poorest of all the methods considered, the discrepancy being as

much as 14 percent (at p = 5).

CONCLUDING REMARKS

This paper reports a vibration study of free-free aluminum elliptical cylindrical
shells of constant mass over a range of cross-~sectional eccentricities from zero (cir-
cular shell) to 0.916 (corresponding to a major~-to-minor axis ratio of 2.5). With
increased eccentricity over this range, shell frequencies were reduced by as much as
40 percent. Experimental resonant frequencies, normal-displacement node locations,
and mode shapes were obtained by use of an air-jet shaker or an electrodynamic shaker
with a noncontact inductance proximity sensor that could be moved over most of the shell
surface. Experimental frequencies are in generally good agreement with analytical fre-
quencies calculated by means of a Rayleigh-Ritz type of analysis featuring multiterm
longitudinal and circumferential modal expansions. Single longitudinal functions in each
of the shell displacement series were sufficient to obtain converged results for the two
families of inextensional free-free modes (longitudinal mode numbers of 0 and 1). Four
longitudinal terms, including beam-vibration functions, were required in the series to
obtain converged results for the next two higher order longitudinal modes (longitudinal
mode numbers of 2 and 3). Along with these longitudinal approximations, an increasing
number of circumferential trigonometric terms were required for convergence with

16
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increasing eccentricity, and as many as 32 circumferential terms were required for the
highest eccentricity shell.

As eccentricity increased, fewer higher order experimental shell vibration modes
could be identified exclusively according to longitudinal and circumferential mode num-
bers, and there were more higher order analytical modes having two frequencies for
each pair of longitudinal and circumferential mode numbers. Analytical circumferential
mode shapes shed further light on this modal coupling and dual frequency behavior by
indicating the presence of more than one longitudinal and/or circumferential mode in
each mode shape.

Frequencies calculated by methods involving various approximations to the non-
circular curvature are in good agreement with both experimental and analytical inexten-
sional frequencies of the present study for eccentricities up to 0.760 (corresponding to a
major-to-minor axis ratio of 1.538).

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., September 30, 1970.
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APPENDIX A

MATRIX ELEMENTS AND INTEGRALS IN RAYLEIGH-RITZ
VIBRATION ANALYSIS

This appendix contains detailed expressions of the matrix elements in equation (10).
Also included are the circumferential and longitudinal integrals involved in these ele-
ments. The circumferential integrals were evaluated numerically by use of a 10-point
Gaussian quadrature method with 20 subintervals for a total of 200 integrating stations.

The matrix elements in equation (10) may be written as follows for the symmetric

modes of an elliptical cylindrical shell:

2 3 2
< b = a . 1-py-= al\. h'(l-p)r
Ajs =—14J —jp—==19d —_ —— L Iqd Al
jmp =5~ 191 +-5 10 5= IpJ +<b2> p—5g I3J2 (Ala)
2.9
= .1 - h4(1 - -
Bijmp = 'néjp<puJ3 - —-z-ﬁJ4> + <32-> J—(B—z_‘QI4J4 (Alb)
b
2 .2
C - . , a\. h(l-pu)s
Cijmp~ﬂu6]p<1 + 60360p>J5 +<———b2> ip 5 I4Jg (Alc)
2 3.2 2
= a .- b 1-urs a\ h®:r a 3h%(1-pu) =
Fijmp 02 iplsd7 + 3 5 698 +<b2> 15 17 +b2 39 Iodg (A1q)
G a_ .7 a h2 Ind a3h21-J aphzl—u- Ale)

— 3 22 - 2 /. - 3,2 -
_a b“ h a h . a\ h<.
Hijmp = ) Isdi2 + 5 15 Id1s - 212 U<118J14 + 919J15> + <;2-) 12 PIrd12

a . hz(l-u)
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APPENDIX A — Continued

=—511J2
aR,

where I is a circumferential integral and J is a longitudinal integral and where

5jp’ 50]" and 60p denote Kronecker delta functions of the form
1 (k =1)
Oy, =
- 0 (k #1)
for k1=0,1,2,. . .,j,p.

The circumferential integrals are defined as follows:

- 27
I = @"3/2
0

cos jo cos po dé

_ 27

) =§ 83/2sin 6 sin po do
0

- 27
I3 =§ ©9/2sin j6 sin po de
0

- 27 3
I4=S‘ $“sin jO sin p6 dé
0

- 27
I5 =§ <I>3/2cos j6 cos po do
0

- 27
ig = (7 3/2in jo sin po a0
0

(A2a)

(A2b)

(A2c¢)

(A3a)

(A3b)

(A3c)

(A3d)

(A3e)

(A3f)

19



APPENDIX A — Continued

- 27

i =S' @9/2<j cos jo +-§- e261sin 26 sin j9>(p cos pb +g e26~15in 26 sin pe>d9 (A3g)
0

- (2T 3/9 3 9. -1

Ig:S. ® (j cosj9+-2-e & “sin 20 sin jO|cos pd db (A3h)
0

- (27 39 3 9 -1

Ig =S‘ ®“/ “cos j9<p cos péd *s e2®" "sin 20 sin je)de (A3i)
0

The antisymmetric matrix elements are identical in form to equations (A1) and (A2) and
are obtained by simply interchanging sin jé, sin pf for cos jd, cos pé in equa-
tions (A3). In addition,
2° .2
- . a\". h"(1-p
Cijmp = WH53p<1 - 50j60p>J5 + <b—2> ip 52 ) I4J¢ (A4)

For both symmetric and antisymmetric matrix elements, it can be shown that the integrals
in equations (A3) vanish if j + p is odd and have values if j + p is even (i.e.,
ji,p=0,2,4,. . .0r1,3,5 .. .). Thus, two calculations must be made in every appli-
cation of the analysis for symmetric or antisymmetric modes, one for all even circum-
ferential modal functions and another for all odd functions.

Longitudinal Integrals for Arbitrary End Conditions

The longitudinal integrals are defined by the following general expressions, which
can be evaluated in closed form for particular choices of modal functions and end

conditions:
L L )
Jy= o XiuXmu dx Jg = 510 X Xmw dx
{-.L L .
Jz = JO XiuXmu dx J6 = SO Xiume d.X
% (a5)
L L
Jg = go XiyXpy dx Jn = go XjyXmy dx
L 1 L 1 1
Jgq = S‘O XjuXmy dx Jg = §0 XivXmy &
A

(Equations continued on next page)
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APPENDIX A — Continued

L L S h
Jg = Sjo XiyXmw dx Ji13 = SO XiwXmw dx
L . L "
J10 = S‘O XjvEmw 9X J14 = go XiwXmw 9%
> (A5)
Ty x Lo
J11 = Jo XiyXmw & JI15 = S\O XjwXmw dx
L L,
J12 = ‘§0 XiwXmw dx J16 = S‘O XiwXmw X
J

Longitudinal Integrals for Free-Free Shell

With the ends of the cylindrical shell free and the longitudinal modal functions given
by equations (7), the integrals in equations (A5) reduce to the following forms on the basis
of reference 22:

i=0 (eq. (7a)):

~
J1=J2=J3=J4=J5=J6:J8=J11=J13=J15=J16=0 (AllvalueSOf m)
i+ m)
J7=J :J =
9 12 (i=m)\ (A6a)
ZNm')’mEl - (-pm+1] (m z2)
J10=J14 =
0 (m = 0,1)
./

i=1 (eq. (Th):

J{=Jd3=J5=J93=Jd15=0 (All values of m)

/-

0 (m =0)

. (A6D)
Jp=34=3g=Jg=J11=J16= (= @ = m)
2[ m+1] -
L2014 (-1 P
T +(-1) (m = 2)

(Equations continued on next page)
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APPENDIX A — Concluded

0 = mp
Jp=Jdg=Jdjg=C L (i =m)
12
(A6b)
2Nyl - (_1)m+1 (m 2 2)
J10=914= (0 (=m)
0 (m = 0))
imz2 (eq. (7c)):
5
0 (1 # m)
Ji1=Jd13 =
1 13 N;lnL (i =m)
4N1Nm<yiN§n - YmN§> i
R (- 41 (i # m)
J2=J4:J6=J8=J11=J16= Nm'Nl
Nin¥en(YmNmL + 6) @ = m)
4N} ngNm - AN [
- 'y E~1)1+m + 1:1 (i # m) (A6c)
J3=J5=J15= Nm_N:?
Nm'ym(z - 'ymNmL) (i = m)
(i # m)
J7r=Jdg=Jd19 = (i =m)
4
ANm(viNi - ymN i
m(’}’l i~ 7m m)E_1)1+m +1] (i # m)
5 - N - NG
J10=914 = oo
Nm')’m(2 - ?’mNmL> (i = m)
J

The coupling characteristics noted in the body of the paper are implicit in equa-
tions (A6), namely, the integrals vanish if i + m is odd and have values if i+ m is

even (i.e., i,m=0,2,4,. . .0r1,3,5,. . .).
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APPENDIX B

APPLICATION OF ANALYSIS TO FREELY SUPPORTED
ELLIPTICAL SHELLS

This appendix demonstrates the application of the elliptical-shell vibration analysis
developed in the body of the paper to the models of table I with assumed freely supported
end conditions. With the use of equations (6), each series of longitudinal terms in equa-
tions (5) reduces to a single trigonometric function. The integrals in equations (A5) used
in equations (A1) and (A2) thus reduce to the following for this end condition:

2
J1=J3=J11=J16=(mT£L (Bla)
To = Jr = Ja = _ L
2—J7—J9—J12—§ (B1b)
I3 =J5 = -%ﬂ (Blc)
2
m
J10=J14=J15=-(2£) (Ble)
4
J13=(m—”§— (B1f)
2L

where, for this end condition, m is defined as the number of longitudinal (or axial) half-
waves. The reduction of each series of longitudinal terms in equations (5) to a single
tfrigonometric function is due to the relations

S\Lsini—@sinmﬂxdx=§Lcosiﬂcosmﬂxdx=0 (i # m)
0 L L 0 L L

By use of equations (B1) and equations (6) in equation (10), calculated frequencies
were obtained for the models of table I with the same numbers of circumferential terms
as those used for the free-free models. Results are given in tables VII and VIII and are
compared in figures 15 and 16 with frequencies calculated by reference 10. The two sets
of results are seen to be in close agreement, and the decrease in frequency with increasing
eccentricity is similar to that found for the free-free shells for m =2 and 3.
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TABLE I.- PROPERTIES OF CYLINDRICAL SHELLS

[E = 107 b/in2 (68.95 GN/m2); 4 =0.3; p=2.588 x 10-4 lb-sec2/in? (2768 kg/m3);
L = 24 inches (61.0 cm); h = 0.032 inch (0.813 mm)]

TN
N

26

d
Model a b a/b e

1 12.00 in, 12.00 in. 1.0 0
(30.50 cm) (30.50 cm)

5 12,95 in. 11.01 in, 1.176 0.526
(32.90 cm) (27.97 cm)

3 14.39 in. 9.35 in. 1538 0.760
(36.55 cm) (23.75 cm) ) )

4 16.39 in. 6.56 in. 550 0.916
(41.63 cm) (16.66 cm) ) )




O I & U bW N = O

10
11

12
13

14

m=0
Analysis| Experiment
0
5.645 5.6
16.0 15.6
30.6 30.0
49.5 48.9
72.6 72.0
100.0 99.3
131.5 131.0
167.25 166.9
£167.2
207.2 206.9
251.4 250.5
299.7 €301.6
352.3 352.1
409.1 410.8

TABLE II.~ EXPERIMENTAL AND ANALYTICAL FREQUENCIES

OF FREE-FREE CIRCULAR CYLINDRICAL SHELL

m

Analysis

42014.00

7.54
19.0
34.2
53.4
6.7
104.1
135.7

171.5

211.5
255.7

304.1
356.7
413.5

aExtensional frequency.
bCoupled with n = 13.
CCoupled with n = 9.
dMaximum frequency with air shaker.
€Coupled with n = 10.
fMinimum frequency with electric shaker.

8Coupled with m =3, n = 13.

Frequency, Hz

=1

Experiment

7.7
18.9
35.7
53.0
76.4

103.8
135.3

di70.7

210.2
253.0

305.5
352.0
8412.5

m =2 m =3
Analysis|Experiment;Analysis|Experiment
a2733.0 22594.0
42293.0 22494.0

1616.0 2101.0
1068.0 1709.0
717.8 1340.0
504.8 1045.0
375.6 | P371.3 823.5
299.9 299.1 663.4
262.2 €257.4 551.4
262.1
253.4 €248.8 471.8 484.4
249.3
266.3 268.8 436.3
294.7 290.9 421.8 422.1
425.6
334.0 327.6 429.4 438.3
381.1 454.5 453.2
434.7 436.6 493.1 493.3
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TABLE Ill.- EXPERIMENTAL AND ANALYTICAL INEXTENSIONAL FREQUENCIES
OF FREE-FREE ELLIPTICAL CYLINDRICAL SHELLS

() % = 1.176,

Frequency, Hz,at m =0 from —

e = 0.526

—

p aFxperiment Present analysis
— Reference 9 | Reference 10
Symmetric| Antisymmetric | Symmetric| Antisymmetric

0 0

1 7.7 % 10-5
2 5.6 5.6 5.62 5.68 5.92 5.56

3 16.1 16.2 15.89 15.89 16.3 15.4

4 30.9 30.8 30.52 30.52 31.2 31.1

5 50.1 50.1 49.41 49.41 50.3 50.45

6 74.8 4.4 72.54 72.54 73.8 71.6

7 102.4 102.4 99.87 99.87 101.5 98.9

8 134.6 131.4 134.4 133.5 133.2

9 171.5 171.7 167.2 167.2 169.8 168.1
10 212.5 212.8 207.1 207.1 210.3 204.8
11 258.8 258.4 251.3 251.3 255.2 251.1
12 312.1 299.6 299.6 304.2 302.8
13 3638 362.3 352.2 352.2 357.5 351.9

363.0 ’ ’
14 423.2 409.0 | 409.0 415.2 405.8
Frequency, Hz,at m=1 from —
p a‘Experiment Present analysis
I - - Reference 10| Reference 11

|| Symmetric| Antisymmetric | Symmetric| Antisymmetric

0 b2576.00 (c) 0

1 01886.00 2148.00 (c) 0

2 7.7 7.8 7.52 7.55 6.13 6.25

3 19.1 19.1 18.94 18.94 16.2 16.9

4 34.6 34.10 34.11 32.0 33.5

5 54.3 54.3 53.28 53.28 51.5 50.7

6 79.5 78.9 76.56 76.56 72.6 3.9

7 106.8 106.9 104.0 104.0 100.0 101.4

8 138.9 135.6 135.6 134.3 133.0

9 174.8 175.4 171.4 171.4 169.2 168.9
10 215.9 216.3 211.4 211.4 205.9 209.0
11 261.7 261.8 255.6 255.6 252.2 253.3
12 304.0 304.0 303.9 301.9
13 356.6 356.6 353.0 354.7
14 430.1 { 413.4 413.4 406.9 411.7

aFrequencies for p

bExtensional frequency.

CNegative

eigenvalue.

=5 obtained with air shaker.




oW N = O

O W -3 m

11
12

D b W N = O

o o < BEEN Bie )

10
11
12

TABLE III.- EXPERIMENTAL AND ANALYTICAL INEXTENSIONAL FREQUENCIES

OF FREE-FREE ELLIPTICAL CYLINDRICAL SHELLS — Continued

(b) %: 1.538,

e = 0.760

AExtensional frequency.
bMaximum frequency with air shaker.
CMinimum frequency with electric shaker.
dCoupled with m=2, p=29,
€Negative eigenvalue.
fCoupled with m = 2.

Frequency, Hz,at m =0 from —
Experiment Present analysis
Reference 9 | Reference 10
Symmetric| Antisymmetric| Symmetric| Antisymmetrie
22554.00 0
0 24821.00 1.02 x 10-4
5.1 5.7 5.47 5.89 7.28 4.90
15.0 14.9 15.5 15.5 18.1 16.4
29.2 29.3 29.9 30.0 34.1 31.8
:48'0 b48.0 48.8 48.8 54.7 46.9
48.3 €48.4
71.0 71.2 71.85 71.9 80.0 74.4
98.1 98.0 99.2 99.2 109.9 101.2
129.4 129.5 130.7 130.7 144 .4 127.4
164.9 164.9 166.4 166.4 183.5 171.1
d303.4 206.3 206.3 2217.2 207.4
248.8 248.9 250.5 250.5 275.5 246.5
295.6 296.3 298.9 298.9 328.4 305.9
Frequency, Hz, at m =1 from —
Experiment Present analysis
- Reference 10| Reference 11
Symmetric| Antisymmetric| Symmetric | Antisymmetric
a42336.00 (e) 0
21694.00 42343.00 (e) 0
1.5 7.3 7.40 7.59 5.40 6.35
18.1 17.8 18.5 18.5 17.2 17.2
32.6 32.9 33.5 33.5 32.8 32.2
b51.0 P51.8 52.6 52.6 47.8 51.6
€52.0 €52.8
74.9 74.9 75.8 75.8 75.5 75.3
101.6 101.9 103.3 103.2 102.2 103.2
133.1 132.9 134.9 134.9 128.4 135.5
168.6 168.2 170.6 170.6 172.2 172.0
1201.9 210.6 210.6 208.4 212.9
253.3 253.1 254.8 254.8 247.5 258.0
301.7 301.4 303.3 303.3 307.0 307.5

29




30

TABLE II.- EXPERIMENTAL AND ANALYTICAL INEXTENSIONAL FREQUENCIES
OF FREE-FREE ELLIPTICAL CYLINDRICAL SHELLS — Concluded

a_
(C) 5-2.5

B

e =0.916

Frequency, Hz, at m =0 from —

P Experiment
Symmetric | Antisymmetric
0
1
2 4.8
3 14.0 13.7
4 27.4 28.5
5 b46.3 bgs.8
€46.9
6 69.2 69.9
7 96.4 96.0
8 126.9 128.3
9 163.1 d162.7
10 202.6 203.0
11 246.5 247.4
12 297.1 296.8
Fr
P Experiment
Symmetric | Antisymmetric
0
1
2 7.2 7.4
3 b17.2 b16.2
€18.0
4 b30.9 b31.4
5 b9 0 bag 9
€51.4 €49.5
6 72.9 73.1
7 100.0 100.4
8 130.7 130.8
9 167.1 167.3
10 206.4 204.8
11| f256.6 £250.3
€260.0
12 301.4 300.9

AExtensional frequency.
bobtained with air shaker.
CObtained with electric shaker.
dstrongly coupled with m = 1, p=8.
€Negative eigenvalue.
fcoupled with m 2 2.
ECircumferential nodes (i.e., for m = 1) at opposite ends of shell.

Present analysis

Symmetric

22584.00
0
5.13
14.4
28.2

46.7

69.2

96.4
127.5
163.1
202.9
241.1
295.4

Antisymmetric

25346.00
6.79
14.4
29.0

46.5

69.7

96.2
127.8
163.0
203.1
247.0
295.5

Present analysis

Symmetric

23700.00
21401.00
7.11

17.3
31.7
50.3

3.1
100.3
131.6
167.6
207.1

251.3

299.6

Antisymmetric

42525.00
7.74

17.2
32.1
50.2

73.4
100.2
131.8
167.2
2017.3

251.2

299.7

Reference 10

0
4.71 x 10-5
5.39
16.6
29.3

51.5

69.7
103.7
126.7
172.9
200.6
258.6
291.8

equency, Hz, at m=1 from —

Reference 10

(e)
(e)
5.94

17.5

30.2

70.7
104.8
127.7
174.0
201.6

259.75

Reference 11

6.76
18.3

34.4

80.5
110.4
144.9
184.0
227.7

276.0

292.8

329.0




TABLE IV.- EXPERIMENTAL AND ANALYTICAL FREQUENCIES OF FREE-FREE ELLIPTICAL CYLINDRICAL SHELLS

Frequency, Hz, for % =1.176, e =0.526 Frequency, Hz, for % =1.538, e =0.760 Frequency, Hz, for %: 2.5, e=0.916

Experiment Analysis Experiment Analysis Experiment Analysis Experiment Analysis Experiment Analysis ExperimentiAnalysis Experiment Analysis Experiment Analysis Experiment Analysis

362.3
2125 2071 352.2 496.6  200.7 3323 330.6 4156 148.1 278.9 405.4
363.0 a508.2
212.8 2071 363.8  352.2 496.6 2017 2063  343.6  345.3 62 115 1686 279.5 409.6
.6
2159 2114 356.6 S0 204 2063 35 a3 4762 158.4 1656 279.5 409.7
61.5
2163 2114 356.6 509 2019 206 o 3454 a0 1661 2968 2964 411.7
: 63.
2414 244.1 375.9  373.8 208.4 2106 345.4 4717 166.1  297.1  295.5 412.3
2418 244.1 376.6  373.8 211.9  213.9 3495 3517 484.5 1671  167.2  300.9  299.6  423.0  43L9
250.6  246.5 390.6 3815 yng 39 351.7 484.5 1673 167.6 3014  299.7 432.2
246.5 391.0 3815 ) 214.0 356.0 202.6  202.9 327.9 476.7
258.4  251.3 460.6 214.0 356.0 203.0  203.1 327.9 476.9
258.8 2513 400.6 248.8 2505 3622  366.6 204.8  207.1 328.4 478.7
2617  255.6 401.6 248.9 2505  367.2  366.6 206.4  207.3 328.4 479.0
261.8  255.6 401.6 3.0 248 o 3838 217.6 340.6
a9 274.4 4231 409.0 253.3  254.8 ’ 383.8 217.6 340.6
209.1
274.4 4232 409.0 sy | IA3 894 402 219.2 347.8
304.5  292.1 430.1 4134 ‘ 2643 40L0  410.2 219.2 347.9
265.2 246.5
292.1 413.4 268.8  403.9  410.5 g 200 352.2
3121 299.6 458  434.8 268.8 410.5 : 247.1 352.3
250.3
209.6 450.9  434.8 295.6  298.9 411.9 251.2 356.5
418.0 255.1 360.6
304.0 446 206.3  298.9 411.9 251.3 356.5
256.6 363.0
2057 304.0 4.6 301.4  303.3 4147 265.3 398.6
297.9 3044 , 4650  452.8 301.7  303.3 4147 265.3 398.7
306.7  304.4 466.3  452.8 3115 4381 265.4 399.4
308.5 440.4 260.0
340.3
334.8 476.1  484.2 3115 438.1 265.4 399.4
341.4 | ‘
3437 | 334.8 ‘ a491.0 | 484.2 i l | 323.4 } 330.6 ‘ ] 475.6 | ‘ 260.4 ‘ 278.9 405.3

1¢

20pscure circumferential nodal pattern.
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TABLE V.- CONVERGENCE CHARACTERISTICS FOR

VARIOUS CIRCUMFERENTIAL MODAL
APPROXIMATIONS WITH A SINGLE

[%: 2.5; e =0.916; symmetric]

P
30
0
2 5.126
4 28.23
6 69.19
8 127.5
10 203.0
12 295.5
14 | 4072
0 a0
2 7.106
4 31.70
6 73.07
8 131.6
10 207.1
12 299.8
14 411.4
A y-mode.

LONGITUDINAL TERM

32

5.126
28.23
69.19

127.5
202.9
295.4
405.4
m=1
a

7.106
31.70
73.07

131.6
207.1
299.6
409.6

Number of circumferential terms
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TABLE V.- CONVERGENCE CHARACTERISTICS FOR

VARIOUS MODAL APPROXIMATIONS — Concluded

l:% =2.5; e=0.916; Symmetri{]

Number of circumferential terms

P 30 31 32 33 34 35
m=2
0 3519.0 3519.0 3519.0 3519.0 3519.0 3519.0
2 908.8 908.5 908.0 906.8 911.5
5209.0 5209.0 5209.0 5209.0 5209.0 5209.0
4 7034.0 7034.0 7034.0 7034.0 7034.0 7034.0
6
8 167.6 167.6 167.6 167.6 167.6 167.6
536.2 534.9
10 221.3 221.3 221.3 221.3 221.3 221.3
282.7 282.7 282.7 282.7 282.17 282.7
12 343.5 343.3 343.3 343.2 343.2 343.2
533.9 533.2 532.7 532.4
14 434.8 433.7 433.0 432.7 432.5 432.4
16 581.6 577.1 574.0 571.9 570.6 569.7
902.2
m=3
0
2 5415.0 1396.0 1396.0 1395.0 1394.0 1394.0
5415.0 5415.0 5415.0 5415.0 5415.0
4 8521.0 8521.0 8521.0 8521.0 851.5 8521.0
8521.0
6 1400.0
8 861.8 858.3 855.6 853.4 849.9
10 269.9 269.9 269.9 269.9 269.9 269.9
12 333.8 333.7 333.7 333.7 333.7 333.7
405.6 405.4 405.2 405.1 405.1 405.1
14 485.1 483.9 483.2 482.8 482.6 482.4
664.2 660.3 657.4 655.2 653.6 652.6
16 584.0 580.6 578.3 576.6 575.6 574.9
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TABLE VI.- RIGID-BODY (ZERQ FREQUENCY) MODES

m p Mode
Symmetric
0
Antisymmetric
O - - .
Symmetric
1
Antisymmetric
Symmetric
0
Antisymmetric
Symmetric
1
Antisymmetric
Number of | Longitudinal
terms Circumferential

4Actual frequency, 1.01 Hz.

34

vorw

vVorw

-———— -

lor 4

e = 0.526

13

e = 0.760

16

32




TABLE VII.- ANALYTICAL FREQUENCIES FOR FREELY SUPPORTED

W 0O I O U R W N Rk O

P = T o S = S Y
B W N = O

CIRCULAR SHELL (MODEL 1)

m=1
2537.0
1565.0
894.1
529.8
338.6
235.6
182.1
162.2
166.9
188.6
221.3
261.7
308.0
359.5
415.6

Frequency, Hz

m=2

2594.0
2309.0
1782.0
1315.0
968.4
726.3
560.3
448.6
3717.2
338.1
325.1
335.0
361.0
399.5
4417.5
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TABLE VIII.- ANALYTICAL FREQUENCIES FOR FREELY SUPPORTED

ELLIPTICAL SHELLS

Frequency, Hz

p e = 0.526 (model 2) | e =0.760 (model 3)
Symmetric lAntisymmetric Symmetric bnﬁsymmetric
m=1
0| 2550.0 2612.0
1 1440.0 1686.0 1238.0 1856.0
2 8176.6 888.9 785.2 858.5
3 524.1 524.2 491.1 492.4
4 335.5 335.5 319.4 319.4
5 234.3 234.3 226.9
6 184.2 184.2
7 157.1 157.0 138.5 138.5
8 160.2 160.2 140.1 140.1
178.3 178.3
9 189.8 189.8 184.1 184.1
226.9
10 221.9 221.9 223.9 223.9
11 261.9 261.9 263.6 263.6
12| -308.1 308.1 307.3 307.3
13 359.5 359.5 359.4 359.4
14 415.6 415.6 417.1 4117.1
m=
0] 2726.0 3248.0
1{ 2083.0 2607.0 1876.0 3188.0
2 1696.0 1782.0 1419.0 1775.0
3 1291.0 1297.0 1145.0 1214.0
4 956.5 956.7 886.1 893.0
5 718.8 718.8 677.0 677.4
6 555.6 555.6 531.3 531.6
7 446.6 446.6 441.5
8 381.8 381.8
9 268.3 268.3
10 310.6 310.6 268.1 268.1
328.2
11 312.4 312.4 325.4 325.4
347.5 3417.5
12 359.4 359.4 382.3 328.2
382.3
13 401.5 401.5 393.4 393.4
441.5
14 448.4 448.4 | 454.7 454.7

e =0.916 (model 4)

2723.0
931.1
555.6

106.8

107.0
388.4

148.2
257.0

151.7
194.8

206.5
259.3
310.2
351.4
413.3

4155.0
1694.0
1035.0

793.2

659.7
202.4

202.5
258.5

259.2

323.8
398.0

393.2
550.4

466.3

Symmetric LAntisymmetric

2039.0
748.1

392.4

106.8
258.2

107.7
151.6

148.2

194.9

206.6
259.4
310.5
351.9
413.5

4081.0

989.0
1675.0

202.4

202.5
258.5

259.2

323.8
398.2
700.3

393.4

- 467.2
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Figure 2.- Schematic of simplified test apparatus.
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Figure 3.- Closeup of movable inductance probe assembly.
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